Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Clinical and Molecular Hepatology ; : 28-37, 2014.
Article in English | WPRIM | ID: wpr-18378

ABSTRACT

BACKGROUND/AIMS: The role of prostaglandin E2 (PGE2) in the modulation of cell growth is well established in colorectal cancer. The aim of this study was to elucidate the significance of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) down-regulation on the prognosis of hepatocellular carcinoma (HCC) patients. METHODS: The expression of 15-PGDH in HCC cell lines and resected HCC tissues was investigated, and the correlation between 15-PGDH expression and HCC cell-line proliferation and patient survival was explored. RESULTS: The interleukin-1-beta-induced suppression of 15-PGDH did not change the proliferation of PLC and Huh-7 cells in the MTS [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The induction of 15-PGDH by transfection in HepG2 cells without baseline 15-PGDH expression was suppressed at day 2 of proliferation compared with empty-vector transfection, but there was no difference at day 3. Among the 153 patients who received curative HCC resection between 2003 and 2004 at our institution, 15-PGDH expression was observed in resected HCC tissues in 56 (36.6%), but the 5-year survival rate did not differ from that of the remaining 97 non-15-PGDH-expressing patients (57.1% vs 59.8%; P=0.93). Among 50 patients who exhibited baseline 15-PGDH expression in adjacent nontumor liver tissues, 28 (56%) exhibited a reduction in 15-PGDH expression score in HCC tissues, and there was a trend toward fewer long-term survivors compared with the remaining 22 with the same or increment in their 15-PGDH expression score in HCC tissues. CONCLUSIONS: The prognostic significance of 15-PGDH down-regulation in HCC was not established in this study. However, maintenance of 15-PGDH expression could be a potential therapeutic target for a subgroup of HCC patients with baseline 15-PGDH expression in adjacent nontumor liver tissue.


Subject(s)
Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Carcinoma, Hepatocellular/diagnosis , Down-Regulation , Hep G2 Cells , Hydroxyprostaglandin Dehydrogenases/metabolism , Immunohistochemistry , Kaplan-Meier Estimate , Liver Neoplasms/diagnosis , Prognosis
2.
Yonsei Medical Journal ; : 692-699, 2010.
Article in English | WPRIM | ID: wpr-53357

ABSTRACT

PURPOSE: In addition to cyclooxygenase-2 (COX-2) which is related to prostaglandin E2 synthesis, other enzymes such as cytosolic phospholipase A2 (cPLA2), microsomal prostaglandin E2 synthase-1 (mPGES-1), and 15-prostaglandin dehydrogenase (15-PGDH) have been suggested to be related to carcinogenesis of colorectal cancer (CRC). The aim of this study was to investigate the roles of cPLA2, COX-2, mPGES-1, and 15-PGDH in tumor progression. MATERIALS AND METHODS: cPLA2, COX-2, mPGES-1, 15-PGDH, and vascular endothelial growth factor (VEGF) expressions were immunohistochemically examined in 89 CRC, and their expressions were compared with each other or clinicopathologic parameters as well as VEGF as tumor progression parameters. RESULTS: cPLA2 was expressed in 54.5%, COX-2 in 80.5%, mPGES-1 in 96.4%, 15-PGDH in 46.1%, and VEGF in 65.9%. The expression of cPLA2 correlated with VEGF expression. COX-2 expression was correlated with the depth of invasion, tumor stage, cPLA2, and VEGF expressions. Moreover, VEGF revealed the highest expression in the tissues positive for both cPLA2 and COX-2. Furthermore, 15-PGDH expression was inversely correlated with VEGF expression. CONCLUSION: The present study demonstrates that cPLA2 and mPGES-1, in addition to COX-2, are constitutively overexpressed, and that 15-PGDH might be attenuated in colorectal cancer. Furthermore, cPLA2 and 15-PGDH as well as COX-2 could have an important role in tumor progression.


Subject(s)
Aged , Female , Humans , Male , Middle Aged , Colorectal Neoplasms/enzymology , Cyclooxygenase 2/metabolism , Gene Expression Regulation, Enzymologic , Group IV Phospholipases A2/metabolism , Hydroxyprostaglandin Dehydrogenases/metabolism , Immunohistochemistry , Intramolecular Oxidoreductases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL